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The observable behavior of a complex system reflects the mechanisms governing the internal
interactions between the system’s components and the effect of external perturbations. Here we show
that by capturing the simultaneous activity of several of the system’s components we can separate the
internal dynamics from the external fluctuations. The method allows us to systematically determine
the origin of fluctuations in various real systems, finding that while the Internet and the computer
chip have robust internal dynamics, highway and Web traffic are driven by external demand. As
multichannel measurements are becoming the norm in most fields, the method could help uncover
the collective dynamics of a wide array of complex systems.

Decades of research has lead to the development of so-
phisticated tools to analyze time series generated by var-
ious dynamical systems, allowing us to extract short and
long range temporal correlations, periodic patterns and
stationarity information [1, 2, 3, 4]. We lack, however,
systematic methods to extract from multiple datasets in-
formation not already provided by a single time series.
Indeed, advances in computer aided measurement tech-
niques increasingly offer the possibility to separately but
simultaneously record the time dependent activity of a
system’s many components, such as information flow on
thousands of Internet routers or highway traffic on nu-
merous highways. As the time dependent activity of each
component (router or highway) captures the system’s dy-
namics from a different angle, these parallel time series
offer us increasingly complete information about the sys-
tem’s collective behavior. Yet, we have difficulty answer-
ing a simple question: How can we uncover from multiple
time series a system’s internal dynamics?

Multiple time series are typically available for complex
systems whose dynamics is determined by the interaction
of a large number of components that communicate with
each other through some complex network [5]. The dy-
namics of each component is determined by two factors:
(1) interactions between the components, governed by
some internal dynamical rules that distribute the activ-
ity between the various parts of the system and (2) global
variations in the overall activity of the system. For ex-
ample, the traffic increase on highways during peak hours
and surges in the number of Internet users during work-
ing hours represent global activity changes that have a
strong impact on the local activity of each component
(highway or router) as well. Different components are
influenced to a different degree by these global changes,
making impossible for an observer that has access only
to a single component to separate the internal dynamics
from the externally imposed fluctuations. Most impor-
tant, the inevitable fluctuations in the external condi-
tions systematically obscure the mechanisms that govern
the system’s internal dynamics.

Here we propose a method to separate in a systematic
manner for each time series the external from the inter-
nal contributions, and validate it on model systems, for
which the magnitude of the external perturbations can be

explicitly controlled. By removing the impact of the ex-
ternal changes on the system’s activity we gain insights
into the internal dynamics of a wide range of systems,
from Internet traffic to bit flow on a microprocessor.

Let us consider a dynamical system for which we can
record the time dependent activity of N components, al-
lowing us to assign to each component i a time series
{fi(t)}, t = 1, . . . , T and i = 1, . . . , N . As each time
series reflects the joint contribution from the system’s
internal dynamics and external fluctuations, we assume
that we can separate the two contributions by writing

fi(t) = f int

i
(t) + fext

i
(t). (1)

To determine fext

i
(t) let us consider the case when

internal fluctuations are absent, and therefore the to-
tal traffic in the system is distributed in a deterministic
fashion among all components. In this case component
i captures a time independent fraction Ai of the total
traffic. For different components i, Ai can differ signif-
icantly, being determined by the component’s centrality
[6]. The challenge is to extract Ai from the experimen-
tally available data without knowledge of the system’s
internal topology or the dynamical rules governing its
activity. For this we write Ai as the ratio of the total
traffic going through the component i in the time inter-
val t ∈ [0, T ] and the total traffic going over all observed
components during the same time interval

Ai =

∑T

t=1
fi(t)

∑

T

t=1

∑

N

i=1
fi(t)

. (2)

At any moment t the amount of traffic expected to go
through node i is therefore given by the product of Ai

and the total traffic in the system in moment t (i.e.
∑

N

i=1
fi(t)), providing the magnitude of the traffic ex-

pected if only external fluctuations contribute to the ac-
tivity of node i as

fext

i
(t) = Ai

N
∑

i=1

fi(t). (3)
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Equation (3) describes the case in which changes in the
system’s overall activity are reflected in a proportional
fashion on each component. Real systems do display,
however, internal fluctuations, which will generate local
and temporal deviations from the expected fext

i
(t), a con-

sequence of the internal time dependent redistribution of
traffic in the system. Using (1−3) we obtain this internal
component as

f int

i
(t) = fi(t) −

(

∑T

t=1
fi(t)

∑

T

t=1

∑

N

i=1
fi(t)

)

N
∑

i=1

fi(t), (4)

which, by definition, has zero average, as it captures the
deviations from the traffic expected to go through com-
ponent i. Given the experimentally measured dynamic
signal fi(t) on a large number of components, (3) and (4)
allow us to separate each signal fi(t) into two contribu-
tions fext

i
(t) and f int

i
(t), the first capturing changes in

the system’s overall activity, providing a measure of the
external fluctuations and the second describing the fluc-
tuations characterizing the system’s internal dynamics.

To test the ability of (3) and (4) to separate the inter-
nal and external components of a time series we investi-
gate a simple model system of random walkers on a net-
work [11]. We randomly displace M(t) non-interacting
walkers on the network, allowing each to perform Ns

steps and monitor the total number of visitations fi for
each node i. If we repeat the experiment T times, we find
that the number of visits to node i differs from one ex-
periment to the other, the time series {fi(t)}, t = 1 . . . T
characterizing the fluctuations intrinsic to the diffusion
process. If, however, we allow the number of walkers
M(t) to vary from one experiment to the other, the lo-
cal variations in fi(t) are rooted not only in the ran-
dom character of diffusion, but also in variations im-
posed by changes in the total activity M(t). An ob-
server that records only a single fi(t) time series has dif-
ficulty deciding if the measured fluctuations reflect the
system’s internal dynamics only, or some non-stationary
external effect. To test the method’s ability to sepa-
rate the internal and external fluctuations we use an ex-
ternal signal with an easily recognizable periodic profile
M(t) = 〈M〉 + ∆M sin(kt). Figs. 1a and 1d show the
activity fi(t) recorded for a typical node for two different
∆M amplitudes, representing a visible superposition of
the sinusoidal external signal and the internal random-
ness of the diffusion process. As Figs.1b and 1e show,
the external component provided by (3) fully recovers the
external signal imposed on the system. After removing
the external component using Eq.(4) we obtain a random
pattern reflecting the intrinsic fluctuations of the diffu-
sion process. The method works equally well in the case
when the magnitude of the external fluctuations is large
(Figs.1a) or small (Figs.1d) compared to the system’s in-
ternal fluctuations [7].
We can use (3) and (4) to determine if the fluctu-
ations observed in a system are mainly internal or
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FIG. 1: Splitting a measured signal into its external and inter-
nal contributions for the model system. We study the traffic
on the nodes of a scale-free network with 103 nodes, generated
by M(t) random walkers whose number follow a sinusoidal
signal with amplitude ∆M and period 60. (a) The activity
measured on a typical node when the amplitude of the exter-
nal fluctuations is ∆M = 1000. (b) The external contribution
provided by Eq. (3) recovers the periodic signal imposed on
the system. (c) The internal contribution, predicted by Eq.
(4), captures the random pattern of the diffusion process. (d-
f) The same as in (a-c), but with a small external amplitude
∆M = 10, demonstrating that the method works even when
the amplitude of external fluctuations are comparable to fluc-
tuations of the internal dynamics.

externally imposed. For each recorded signal i we
determine the external and internal standard devia-

tions, σext

i
=

√

〈fext

i
(t)2〉 − 〈fext

i
(t)〉

2
and σint

i
=

√

〈

f int

i
(t)2

〉

−
〈

f int

i
(t)
〉2

, and their ratio

ηi =
σext

i

σint

i

. (5)

When ηi ≫ 1 the external fluctuations dominate the dy-
namics of component i, while for ηi ≪ 1 the system’s in-
ternal dynamics dominates over the externally imposed
changes. As different signals have different ηi values,
the system’s overall behavior is best characterized by the
P (ηi) distribution, obtained after calculating ηi for each
signal we have access to. Figures 2a and b show P (ηi) for
the random walk model, in which the number of walkers
follows M(t) = 〈M〉+ ξi(t) where ξi(t) is a random vari-
able uniformly distributed between −∆M/2 and ∆M/2.
For small external fluctuations (∆M ≃ 0) the P (ηi) dis-
tribution is highly peaked and is located entirely in the
ηi ≪ 1 region, indicating that external fluctuations have
little influence on the dynamics of the individual com-
ponents. For high ∆M , however, P (ηi) lies in the η >

∼ 1
region, indicating that the system’s dynamics is domi-
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nated by external fluctuations.
Our ability to split the time series into an internal and

external signal offers novel insights into the dynamics of
four systems of major technological importance: Internet
routers [8], a microchip [9], the World-Wide-Web [10] and
the highway system of Colorado. We collected time re-
solved information about the activity of a large number
of components, such as traffic on 374 Internet routers,
switching behavior of 462 gates of a microchip, the daily
visitations of 3000 web sites on the Web and the daily
traffic for 127 highways in Colorado (details about the
databases are provided in Ref. [11]). We used (1 − 4) to
separate the signal for each component i, the correspond-
ing P (η) distribution unraveling clear differences between
the studied systems. We find that for the Internet and
the microchip internal fluctuations dominate over the ex-
ternally induced changes, as the P (η) distribution lies in
the η ≪ 1 region, peaked around η ≃ 0.08 (Fig.2c). On
the other hand, for the World Wide Web and highways
the typical η ratios are an order of magnitude larger (Fig.
2d), the P (η) distribution being peaked at η ≃ 1, indicat-
ing that for these two systems the external and internal
fluctuations are comparable in magnitude.
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FIG. 2: Distribution of ηi = σext

i /σint

i ratios of external and
internal fluctuations for model (a,b) and selected real sys-
tems (c,d). Distribution of the ηi ratios for the random walk
model: (a) For smaller external fluctuations, the distribution
is centered around a small value of η ≪ 1, indicating that
internal fluctuations overcome external ones, dominating the
system’s dynamics. (b) When ∆M is increased, however,
such fluctuations overshadow the system’s internal dynam-
ics, and the P (η) distribution shifts towards larger values of
η (right curve). (c) P (η) distributions for the Internet and
the microchip, centered around η ∼ 0.1, indicate that exter-
nal fluctuations do not affect the system’s overall dynamics
significantly. (d) The World Wide Web and the Highway
networks, with P (η) peaked around η ∼ 1, are strongly influ-
enced by fluctuations in the total number of web surfers and
the number of cars, respectively.

This separation correlates with the finding that the
four studied systems belong to two distinct universality

classes [11]. Indeed, for each recorded signal the time av-
erage 〈fi〉 and the standard deviation σi obey the scaling
law σi ∼ 〈fi〉

α
, where for the microchip and the Internet

α = 1/2, while for the highways and the WWW α = 1.
Figure 2 indicates that α correlates with the relative mag-
nitude of the external fluctuations [11]: for systems with
α = 1/2 the internal fluctuations dominate (Fig. 2c),
while for systems with α = 1 the impact of the external
fluctuations are at least comparable to the fluctuations
generated by the system’s internal dynamics (Fig. 2d).

The P (η) distribution tells us only the origins of the
fluctuations, and is not sufficient to understand the inti-
mate differences between the internal and the external
contributions. A more detailed understanding is pro-
vided by plotting for each signal i the σext

i
and the σint

i

standard deviations in function of the average 〈fi〉 (Fig.
3a-d). We find that for the microchip and the Internet
σext

i
and σint

i
scale with different exponents (Fig. 3a,b):

the internal fluctuations scale with α = 1/2, while the ex-
ternal signal scales with α = 1 (which is an expected fea-
ture of the external fluctuations [11]). Furthermore, for
these two systems the internal standard deviation is much
larger than the external one (σint

i
(〈fi〉) ≫ σext

i
(〈fi〉), ex-

plaining why the overall σ ∼ 〈f〉
α

scaling captures only
the α = 1/2 exponent. In contrast, for the WWW and
the highways the σext

i
and σint

i
curves overlap, both fol-

lowing the α = 1 exponent (Fig. 3c,d).
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FIG. 3: Scaling of the external and internal fluctuations with
the average flux. Internal fluctuations σint

i on the microchip
(a) and on the Internet (b), both belonging to the α = 1/2
class, are significantly larger than external fluctuations σext

i ,
and scale with a different exponent. External and internal
fluctuations are comparable in magnitude on the World Wide
Web (c) and the highway network (d), and they also follow
the same scaling, indicating that in these systems external
fluctuations should have strong impact on systems’ overall
dynamics.

The qualitative difference between the two sets of plots
in Fig. 3 reflect fundamental differences in the internal
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dynamics of the four studied real systems. The split-
ting of the curves seen in Figs. 3a and b indicates that
the Internet and microchip are characterized by a robust
internal dynamics, that leads to a dominating α = 1/2
internal scaling. While the α = 1/2 exponent emerges
in the studied diffusion model as well [11], the nature of
the internal dynamics and the origin of the 1/2 expo-
nent needs to be addressed in each system separately. In
contrast, the overlapping curves seen in Fig. 3c,d indi-
cate not only that highway and WWW traffic are much
more susceptible to external perturbations, but suggest
that these systems do not have a clearly separable inter-
nal dynamics. That is, the local activity of the system
is driven simply by global demand, and the interactions
between the various highways or web sites do not lead
to a distinguishable internal dynamics. Indeed, while on
the microchip and the Internet there are strict protocols
regulating the traffic of bits or packages, highways and
the WWW allow for a much higher flexibility, the users
having the option to leave the system each time they
encounter unforeseen local conditions, like highway con-
gestion or Web delays. Yet, highway and Internet traffic
in many ways are quite similar [13, 14], each describing a
clear source-destination shortest-path traffic. Thus, the
fundamental difference in their internal dynamics is in
many ways surprising and warrants further inquiry.

Our simulations indicate that a non-stationary exter-
nal noise does not affect the method’s applicability, as the
non-stationary behavior will be carried by the external
component of the separated signal. However, it is unclear

if the method could be applied if there is internal nonsta-
tionarity in the system, corresponding to time dependent
shifts in the system’s overall activity between groups of
nodes. Such internal nonstationarity can be uncovered
by calculating the Ai parameters in non-overlapping time
windows [15], potentially resulting in significant lasting
shifts in the Ai values. An inspection of the four studied
systems did not reveal non-stationary internal behavior,
the Ai parameter fluctuating around 〈Ai〉. The method
appears to be insensitive to the choice of the observa-
tional window T used in Eq. (2), as long as T is large
enough so that the average can be evaluated.

In an increasing number of complex systems one can
experimentally monitor the simultaneous activity of hun-
dreds of channels, examples including multichannel mea-
surement of neural activity on in vivo cell colonies [16],
simultaneous monitoring of thousands of gene expression
data sets for model organisms, like E. Coli or S. Cere-

visae [17], flow fluctuation in river networks [18], price
variations in individual stocks or goods [19] or the ac-
tivity of different processors in parallel computation [20].
The method introduced here represents a systematic tool
for extracting information from multiple channel mea-
surements, offering detailed insights into the mechanisms
that govern the dynamics of these systems.
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